
WINTERSEMESTER 2015/16 - NICHTLINEARE PARTIELLE
DIFFERENTIALGLEICHUNGEN

Homework #11 Key

The first two problems are dedicated to a more elementary proof of the Brouwer Fixed
Point Theorem (Theorem 4.1.2). The goal is to replace the argument given in the lecture
using differential forms by more elementary means.

Problem 1. Given a d × d matrix P , denote its cofactor matrix by cof P . From linear
algebra recall the identity (detP )Id = P T cof P . Let u : Rd → Rd be a vector field with
C2 components and introduce a vector field G : Rd → Rd by Gk = (cof Du)jk for some
j ∈ {1, 2, ..., d}. This vector field is a row of the cofactor matrix of the Jacobian matrix
of u. Show that G is divergence free, that is ∇ ·G = 0 for all x ∈ Rd.

Proof. Recall from Linear Algebra that

(cof Du)jk = det

[
∂u

∂x1
· · · ∂u

∂xk−1

ej
∂u

∂xk+1

· · · ∂u

∂xd

]
.

Here ej denotes the jth standard basis vector. Then for some j with 1 ≤ j ≤ d one
obtains

d∑
k=1

∂

∂xk
(cof Du)jk =

d∑
k=1

d∑
l=1
l 6=k

det

[
∂u

∂x1
· · · ∂2u

∂xk∂xl
· · · ej · · ·

∂u

∂xd

]
where we used the definition of the determinant and the product rule of differential cal-
culus. Exchanging the lth with the kth column, using uxlxk

= uxkxl
, and exchanging the

order of the summation gives

d∑
k=1

∂

∂xk
(cof Du)jk = −

d∑
l=1

d∑
k=1
l 6=k

det

[
∂u

∂x1
· · · ej · · ·

∂2u

∂xl∂xk
· · · ∂u

∂xd

]

=
d∑

k=1

∂

∂xl
(cof Du)jl ,

which proves that ∇ ·G = −∇ ·G. �

alternative solution.

Proof. Denote the components of P by pjk. Then

(1) detP δjk =
d∑

l=1

plj(cofP )lk for j, k = 1, ..., d,

in particular,

detP =
d∑

l=1

plj(cofP )lj .
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Differentiating this last equation with respect to pij gives

∂ detP

∂pij
= (cof P )ij .

Here it is important that the (l, j)th entry of the cofactor matrix does not depend on plj.
Setting P = Du in (1) and using the chain rule gives

(2)
d∑

k=1

∂ detDu

∂xk
δjk =

d∑
k,l,m=1

∂ detP

∂plm

∂plm
∂xk

δjk =
d∑

k,l,m=1

(cof Du)lm
∂2ul

∂xk∂xm
δjk ,

for j = 1, 2, ..., d. On the other hand, from equation (1) we know that

detDu δjk =
d∑

l=1

∂ul
∂xj

(cof Du)lk

and hence,

d∑
k=1

∂ detDu

∂xk
δjk =

d∑
k,l=1

∂2ul
∂xjxk

(cofDu)lk +
d∑

l,k=1

∂ul
∂xj

∂(cofDu)lk
∂xk

Comparing this last formula with formula (2) gives

0 =
d∑

l,k=1

∂ul
∂xj

∂(cofDu)lk
∂xk

=
d∑

l=1

∂ul
∂xj

d∑
k=1

∂(cofDu)lk
∂xk

for j = 1, 2, ..., d. All these formulas are valid for all x ∈ Rd. Now fix x ∈ Rd. If
detDu(x) 6= 0, then the columns of the Jacobian are linearly independent and hence

d∑
k=1

∂(cof Du(x))lk
∂xk

= 0

for l = 1, 2, ..., d. If detDu(x) = 0, then for all sufficiently small ε > 0 one has det(εId +
Du(x) 6= 0 and the previous steps of the proof give

d∑
k=1

∂(cof[εId +Du(x)])lk
∂xk

= 0

for l = 1, 2, ..., d and ε > 0. Letting ε→ 0 gives the conclusion also in this case. �

Problem 2. Suppose that w ∈ C2(B(0, 1)) is a retraction of the closed unit ball to its

boundary, that is w : B(0, 1) → Sd−1 and w(x) = x for all x ∈ Sd−1. Recall from the

proof of Theorem 4.1.2 that det Dw = 0 for all x ∈ B(0, 1). Introduce a vector field F
by setting Fj = w1(cof Dw)1j for j = 1, 2, ..., d.

(i) Use Problem 1 to show that F is divergence free.

Proof. Compute

∇ · F =
d∑

j=1

∂w1

∂xj
(cof Dw)1j + w1

d∑
j=1

∂(cof Dw)1j
∂xj

= detDw = 0

where we used the statement of Problem 1 as well as formula (1). �
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Show that in the case d = 3 we have F = w1(∇w2 ×∇w3) = w1∇× (w2∇w3).

Solution. One computes that

(cof Dw)1k =

∂2w2∂3w3 − ∂2w3∂3w2

∂3w2∂1w3 − ∂3w3∂2w2

∂1w2∂2w3 − ∂2w2∂1w3

 = ∇w2 ×∇w3 = ∇× (w2∇w3) = ∇× (w3∇w2) .

Note that this field is divergence free because every irrotational field is.

Problem 3. Use the divergence theorem (Gauss’s Theorem) to prove that a retraction
of the closed ball to its boundary of class C2 does not exist.

Proof. Suppose a retraction exists. Then, using the divergence theorem on the vector field
F introduced in Problem 2 over the unit ball gives∫

Sd−1

x · F (x) dS =

∫
B

∇ · F dx = 0

since on the unit sphere Sd−1 the exterior unit normal at the point x ∈ Sd−1 is equal to
vector x. (This identity is valid in all dimensions.) On the other hand∫

S2

x · F (x) dS =

∫
S2

w1x · (∇w2 ×∇w3) dS .

Use now the vector identity a · (b× c) = c · (a× b). Then∫
S2

x · F (x) dS =

∫
S2

w1∇w3 · (x×∇w2) dS .

Since x is the exterior normal vector and w2 = x2 on S2, we know that

x×∇w2 = x×∇x2 .
By a similar argument ∇w3 can be replaced by ∇x3. Hence, with ej denoting the jth
standard basis vector we have∫

S2

x · F (x) dS =

∫
S2

x1x · (∇x2 ×∇x3) dS

=

∫
S2

x1x · (e2 × e3) dS =

∫
S2

x1x · e1 dS =

∫
S2

x21 dS =
4

3
π 6= 0 .

Hence we have a contradiction and the retraction cannot exist. �

It is not too difficult to obtain an argument which works for all dimensions. Note that

(cof Dw)1j = det


eTj

[∇w2]
T

...
[∇wd]

T


Hence

x · F (x) = x1 det


xT

[∇w2]
T

...
[∇wd]

T

 .
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For x ∈ Sd−1 we know that wj = xj and for j = 2, ..., d and that x is the unit exterior
normal vector. Decomposing the gradient into tangential and normal components gives

∇wj = ∇tanwj + (x · ∇wj)x = ∇tanxj + (x · ∇wj)x .

This formula needs to be justified. The tangential gradient ∇tanf of a function f at
x ∈ Sd−1 is the projection of the gradient into the tangent plane at x. This is best
understood in a fairly general setting. Suppose that x : U ⊂ Rd−1 → S is a smooth
parametrization of the hypersurface S in Rd. Then we know that the Jacobian J = Dx
is a matrix with d rows and d − 1 columns. The columns of this matrix J(u) span the
tangent space of S at x = x(u). Hence, working with the projection into the tangent
space we know by the the chain rule that

∇tanf(x) = J(JTJ)−1JT∇f = J(JTJ)−1∇uf(x(u)) .

This shows that the tangential gradient at x depends only on the values of f on the surface
S. Hence, the tangential gradient of wj and xj is the same a every point x ∈ Sd−1.

In the rows j = 2, ...., d we subtract now (x·∇wj)x
T and add (x·∇xj)xT which are both

multiples of the first row. This operation does not change the determinant and hence

x · F (x) = x1 det


xT

[∇x2]T
...

[∇xd]T

 = x1 det


xT

eT2
...
eTd

 = x21

and thus ∫
Sd−1

x · F (x) dS =

∫
Sd−1

x21 dS = Vol(B) .


