WINTERSEMESTER 2015/16 - NICHTLINEARE PARTIELLE DIFFERENTIALGLEICHUNGEN

Homework \#11 Key

The first two problems are dedicated to a more elementary proof of the Brouwer Fixed Point Theorem (Theorem 4.1.2). The goal is to replace the argument given in the lecture using differential forms by more elementary means.

Problem 1. Given a $d \times d$ matrix P, denote its cofactor matrix by cof P. From linear algebra recall the identity $(\operatorname{det} P) I_{d}=P^{T} \operatorname{cof} P$. Let $u: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be a vector field with C^{2} components and introduce a vector field $G: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ by $G_{k}=(\operatorname{cof} D u)_{j k}$ for some $j \in\{1,2, \ldots, d\}$. This vector field is a row of the cofactor matrix of the Jacobian matrix of u. Show that G is divergence free, that is $\nabla \cdot G=0$ for all $x \in \mathbb{R}^{d}$.
Proof. Recall from Linear Algebra that

$$
(\operatorname{cof} D u)_{j k}=\operatorname{det}\left[\begin{array}{llllll}
\frac{\partial u}{\partial x_{1}} & \cdots & \frac{\partial u}{\partial x_{k-1}} & e_{j} & \frac{\partial u}{\partial x_{k+1}} & \cdots
\end{array} \frac{\partial u}{\partial x_{d}}\right] .
$$

Here e_{j} denotes the j th standard basis vector. Then for some j with $1 \leq j \leq d$ one obtains

$$
\sum_{k=1}^{d} \frac{\partial}{\partial x_{k}}(\operatorname{cof} D u)_{j k}=\sum_{k=1}^{d} \sum_{\substack{l=1 \\
l \neq k}}^{d} \operatorname{det}\left[\begin{array}{lllllll}
\frac{\partial u}{\partial x_{1}} & \cdots & \frac{\partial^{2} u}{\partial x_{k} \partial x_{l}} & \cdots & e_{j} & \cdots & \frac{\partial u}{\partial x_{d}}
\end{array}\right]
$$

where we used the definition of the determinant and the product rule of differential calculus. Exchanging the l th with the k th column, using $u_{x_{l} x_{k}}=u_{x_{k} x_{l}}$, and exchanging the order of the summation gives

$$
\left.\begin{array}{rl}
\sum_{k=1}^{d} \frac{\partial}{\partial x_{k}}(\operatorname{cof} D u)_{j k} & =-\sum_{l=1}^{d} \sum_{\substack{k=1 \\
l \neq k}}^{d} \operatorname{det}\left[\begin{array}{llllll}
\frac{\partial u}{\partial x_{1}} & \cdots & e_{j} & \cdots & \frac{\partial^{2} u}{\partial x_{l} \partial x_{k}} & \cdots
\end{array} \frac{\partial u}{\partial x_{d}}\right.
\end{array}\right]
$$

which proves that $\nabla \cdot G=-\nabla \cdot G$.
alternative solution.
Proof. Denote the components of P by $p_{j k}$. Then

$$
\begin{equation*}
\operatorname{det} P \delta_{j k}=\sum_{l=1}^{d} p_{l j}(\operatorname{cof} P)_{l k} \quad \text { for } j, k=1, \ldots, d \tag{1}
\end{equation*}
$$

in particular,

$$
\operatorname{det} P=\sum_{l=1}^{d} p_{l j}(\operatorname{cof} P)_{l j}
$$

Differentiating this last equation with respect to $p_{i j}$ gives

$$
\frac{\partial \operatorname{det} P}{\partial p_{i j}}=(\operatorname{cof} P)_{i j}
$$

Here it is important that the (l, j) th entry of the cofactor matrix does not depend on $p_{l j}$. Setting $P=D u$ in (1) and using the chain rule gives

$$
\begin{equation*}
\sum_{k=1}^{d} \frac{\partial \operatorname{det} D u}{\partial x_{k}} \delta_{j k}=\sum_{k, l, m=1}^{d} \frac{\partial \operatorname{det} P}{\partial p_{l m}} \frac{\partial p_{l m}}{\partial x_{k}} \delta_{j k}=\sum_{k, l, m=1}^{d}(\operatorname{cof} D u)_{l m} \frac{\partial^{2} u_{l}}{\partial x_{k} \partial x_{m}} \delta_{j k} \tag{2}
\end{equation*}
$$

for $j=1,2, \ldots, d$. On the other hand, from equation (1) we know that

$$
\operatorname{det} D u \delta_{j k}=\sum_{l=1}^{d} \frac{\partial u_{l}}{\partial x_{j}}(\operatorname{cof} D u)_{l k}
$$

and hence,

$$
\sum_{k=1}^{d} \frac{\partial \operatorname{det} D u}{\partial x_{k}} \delta_{j k}=\sum_{k, l=1}^{d} \frac{\partial^{2} u_{l}}{\partial x_{j} x_{k}}(\operatorname{cof} D u)_{l k}+\sum_{l, k=1}^{d} \frac{\partial u_{l}}{\partial x_{j}} \frac{\partial(\operatorname{cof} D u)_{l k}}{\partial x_{k}}
$$

Comparing this last formula with formula (2) gives

$$
0=\sum_{l, k=1}^{d} \frac{\partial u_{l}}{\partial x_{j}} \frac{\partial(\operatorname{cof} D u)_{l k}}{\partial x_{k}}=\sum_{l=1}^{d} \frac{\partial u_{l}}{\partial x_{j}} \sum_{k=1}^{d} \frac{\partial(\operatorname{cof} D u)_{l k}}{\partial x_{k}}
$$

for $j=1,2, \ldots, d$. All these formulas are valid for all $x \in \mathbb{R}^{d}$. Now fix $\underline{x} \in \mathbb{R}^{d}$. If $\operatorname{det} D u(\underline{x}) \neq 0$, then the columns of the Jacobian are linearly independent and hence

$$
\sum_{k=1}^{d} \frac{\partial(\operatorname{cof} D u(\underline{x}))_{l k}}{\partial x_{k}}=0
$$

for $l=1,2, \ldots, d$. If $\operatorname{det} D u(\underline{x})=0$, then for all sufficiently small $\varepsilon>0$ one has $\operatorname{det}\left(\varepsilon I_{d}+\right.$ $D u(\underline{x}) \neq 0$ and the previous steps of the proof give

$$
\sum_{k=1}^{d} \frac{\partial\left(\operatorname{cof}\left[\varepsilon I_{d}+D u(\underline{x})\right]\right)_{l k}}{\partial x_{k}}=0
$$

for $l=1,2, \ldots, d$ and $\varepsilon>0$. Letting $\varepsilon \rightarrow 0$ gives the conclusion also in this case.
Problem 2. Suppose that $w \in C^{2}(\overline{B(0,1)})$ is a retraction of the closed unit ball to its boundary, that is $w: \overline{B(0,1)} \rightarrow S^{d-1}$ and $w(x)=x$ for all $x \in S^{d-1}$. Recall from the proof of Theorem 4.1.2 that det $D w=0$ for all $x \in \overline{B(0,1)}$. Introduce a vector field F by setting $F_{j}=w_{1}(\operatorname{cof} D w)_{1 j}$ for $j=1,2, \ldots, d$.
(i) Use Problem 1 to show that F is divergence free.

Proof. Compute

$$
\nabla \cdot F=\sum_{j=1}^{d} \frac{\partial w_{1}}{\partial x_{j}}(\operatorname{cof} D w)_{1 j}+w_{1} \sum_{j=1}^{d} \frac{\partial(\operatorname{cof} D w)_{1 j}}{\partial x_{j}}=\operatorname{det} D w=0
$$

where we used the statement of Problem 1 as well as formula (1).

Show that in the case $d=3$ we have $F=w_{1}\left(\nabla w_{2} \times \nabla w_{3}\right)=w_{1} \nabla \times\left(w_{2} \nabla w_{3}\right)$.
Solution. One computes that
$(\operatorname{cof} D w)_{1 k}=\left[\begin{array}{l}\partial_{2} w_{2} \partial_{3} w_{3}-\partial_{2} w_{3} \partial_{3} w_{2} \\ \partial_{3} w_{2} \partial_{1} w_{3}-\partial_{3} w_{3} \partial_{2} w_{2} \\ \partial_{1} w_{2} \partial_{2} w_{3}-\partial_{2} w_{2} \partial_{1} w_{3}\end{array}\right]=\nabla w_{2} \times \nabla w_{3}=\nabla \times\left(w_{2} \nabla w_{3}\right)=\nabla \times\left(w_{3} \nabla w_{2}\right)$.
Note that this field is divergence free because every irrotational field is.
Problem 3. Use the divergence theorem (Gauss's Theorem) to prove that a retraction of the closed ball to its boundary of class C^{2} does not exist.

Proof. Suppose a retraction exists. Then, using the divergence theorem on the vector field F introduced in Problem 2 over the unit ball gives

$$
\int_{S^{d-1}} x \cdot F(x) d S=\int_{B} \nabla \cdot F d x=0
$$

since on the unit sphere S^{d-1} the exterior unit normal at the point $x \in S^{d-1}$ is equal to vector x. (This identity is valid in all dimensions.) On the other hand

$$
\int_{S^{2}} x \cdot F(x) d S=\int_{S^{2}} w_{1} x \cdot\left(\nabla w_{2} \times \nabla w_{3}\right) d S
$$

Use now the vector identity $a \cdot(b \times c)=c \cdot(a \times b)$. Then

$$
\int_{S^{2}} x \cdot F(x) d S=\int_{S^{2}} w_{1} \nabla w_{3} \cdot\left(x \times \nabla w_{2}\right) d S
$$

Since x is the exterior normal vector and $w_{2}=x_{2}$ on S^{2}, we know that

$$
x \times \nabla w_{2}=x \times \nabla x_{2} .
$$

By a similar argument ∇w_{3} can be replaced by ∇x_{3}. Hence, with e_{j} denoting the j th standard basis vector we have

$$
\begin{aligned}
\int_{S^{2}} x \cdot F(x) d S= & \int_{S^{2}} x_{1} x \cdot\left(\nabla x_{2} \times \nabla x_{3}\right) d S \\
& =\int_{S^{2}} x_{1} x \cdot\left(e_{2} \times e_{3}\right) d S=\int_{S^{2}} x_{1} x \cdot e_{1} d S=\int_{S^{2}} x_{1}^{2} d S=\frac{4}{3} \pi \neq 0 .
\end{aligned}
$$

Hence we have a contradiction and the retraction cannot exist.
It is not too difficult to obtain an argument which works for all dimensions. Note that

$$
(\operatorname{cof} D w)_{1 j}=\operatorname{det}\left[\begin{array}{c}
e_{j}^{T} \\
{\left[\nabla w_{2}\right]^{T}} \\
\vdots \\
{\left[\nabla w_{d}\right]^{T}}
\end{array}\right]
$$

Hence

$$
x \cdot F(x)=x_{1} \operatorname{det}\left[\begin{array}{c}
x^{T} \\
{\left[\nabla w_{2}\right]^{T}} \\
\vdots \\
{\left[\nabla w_{d}\right]^{T}}
\end{array}\right] .
$$

For $x \in S^{d-1}$ we know that $w_{j}=x_{j}$ and for $j=2, \ldots, d$ and that x is the unit exterior normal vector. Decomposing the gradient into tangential and normal components gives

$$
\nabla w_{j}=\nabla_{\tan } w_{j}+\left(x \cdot \nabla w_{j}\right) x=\nabla_{\tan } x_{j}+\left(x \cdot \nabla w_{j}\right) x .
$$

This formula needs to be justified. The tangential gradient $\nabla_{\tan } f$ of a function f at $x \in S^{d-1}$ is the projection of the gradient into the tangent plane at x. This is best understood in a fairly general setting. Suppose that $x: U \subset \mathbb{R}^{d-1} \rightarrow S$ is a smooth parametrization of the hypersurface S in \mathbb{R}^{d}. Then we know that the Jacobian $J=D x$ is a matrix with d rows and $d-1$ columns. The columns of this matrix $J(\underline{u})$ span the tangent space of S at $\underline{x}=x(\underline{u})$. Hence, working with the projection into the tangent space we know by the the chain rule that

$$
\nabla_{\tan } f(\underline{x})=J\left(J^{T} J\right)^{-1} J^{T} \nabla f=J\left(J^{T} J\right)^{-1} \nabla_{u} f(x(\underline{u})) .
$$

This shows that the tangential gradient at \underline{x} depends only on the values of f on the surface S. Hence, the tangential gradient of w_{j} and x_{j} is the same a every point $x \in S^{d-1}$.

In the rows $j=2, \ldots, d$ we subtract now $\left(x \cdot \nabla w_{j}\right) x^{T}$ and add $\left(x \cdot \nabla x_{j}\right) x^{T}$ which are both multiples of the first row. This operation does not change the determinant and hence

$$
x \cdot F(x)=x_{1} \operatorname{det}\left[\begin{array}{c}
x^{T} \\
{\left[\nabla x_{2}\right]^{T}} \\
\vdots \\
{\left[\nabla x_{d}\right]^{T}}
\end{array}\right]=x_{1} \operatorname{det}\left[\begin{array}{c}
x^{T} \\
e_{2}^{T} \\
\vdots \\
e_{d}^{T}
\end{array}\right]=x_{1}^{2}
$$

and thus

$$
\int_{S^{d-1}} x \cdot F(x) d S=\int_{S^{d-1}} x_{1}^{2} d S=\operatorname{Vol}(B) .
$$

